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ABSTRACT

We discuss electronic energy and charge transfer processes

at surfaces in terms of curve crossing models. We suggest that
at low kinetic energies the trajectory aprroximaticon shcull be
replaced by a mean trajectory approximation (MTA), in which the
nuclear motion gets feedback from and adjusts to the curve
crossing dynamics. We discuss two derivations of MTA by using an
eikonal approximation and a path integral method. The effects of

phonon or electron-hole pair excitations on the charge transfer

process are also incorporated.
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I. Introduction

The dynamics of atomic and molecular processes at solid
surfaces is often dominated by non-adiabatic transitions between
guantum states of the atomic or-molecular system or between
states of the substrate. Frequently discussed examples are those
involving charge exchange between the external atom/molecule and
the surface. The simplest process of this kind is the

ionization/neutralization of an atom/ion incident on a metal

surface.1-7 More complicated examples are charge transfer during

: 8 . . 9-10 . .
sputtering,  chemiluminescence, electron or »hoton stimulated

11

desorotion and energy transfer via an intermediate charge

12 3

transfer process. Auger neutralization of an incident ion~”

it

is a still more involved example. Other important processes tha
may be described by curve crossing model are the surface induced
de-excitation of electronically or vibrationally excited molecule
and, in some cases, molecular dissociation during molecule-

surface collision.

The theoretical treatment of these processes usually

. . . . . . 3-6,8-13¢
involves the classical trajectory approxima<tion N

{reviewed in Section II) which is valid onlv when the <ine

ot

S -
-

b

anergy of the incident atom or molecule is very liarge. For

incicdent energies of the order of the energy differences between

i
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reievant cguantum levels of the incident species or of the

u
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this approximation fails. While much ion scatte*ing werk is

zarried out at high kinetic energy the low kinetic energy regime
is very important in electron stimulated desorption and in the
Since a

thermal desorption and the sticking cf alkali atoms.

fully guantum mechanical treatment of these processes is

difficult (especially in three dimensions) and since cne expects
that the motion of the incident atom is essentially classical and
gquantum effects mostly contreol the transition between the
electronic states, one would like to seek an improved trajectory

approximation. While such a theory may vield a time dependent )

Hamiltonian for the electronic protlem (as does the trajectery
arproximation), it should obtain the nuclear trajectory by a
procedure that will recognize the ccntinuous occurrence of the )

electronic transition and use this information to guide the

evolution of the otherwise classical trajectorv.

(5]

n this paper we examine the iamplications of the

<rajectorv approximation for charge transier processes at metal
surfaces. In this approximaticn the "classical" degrees of )
freedom (denoted collectively by R) evolve under the potential I
= 2.3 1
X: X ?i‘(R)’ wnere x., is the instanzaneous amplitude of the ]
- v - N .
glectronic state i (characterizing the guantunm degrees i N 1
5
freadon) and H,.(R) 1s the matrix element of the Hamiltonian for %
<3 g
the guantum system (which depend paramesrically on R) between <I:xe
i and 3§ cguantum states. )
: i
! |
.o e . . {
IR At - . {
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This approximation has been applied by several workers in
the pas‘t]‘s—21 to problems in molecular dynamics. Here we are
concerned with its justification from first principles as well as
with i4s extension to situations specific to surface science.
Thus we derive the approximation by two methods: the first is
based on the eikonal approximation while the second is obtained
by taking the extremum of the action functional in a path
integral expression for the guantum propagator. We then proceed
to apply this procedure to charge exchange processes at metal
surfaces, taking as a prototype the ionization-neutralization
processes involving an alkali atom colliding with a metal
surface. We derive the equations of motion which govern the
dynamics of the alkali atom motion towards and away from the
surface as well as the transition between the neutral and the
ionic state. These equations which describe the charge transfer
process within the mean potential approximation are then
supplemented by the interaction of the moving atom with phoncns
and electron hole pair excitations in the so0lid. These
interactions give rise to friction on the atomic motion and at
¢inite temperatures, to a random force associated with the random

initial populations of phoncn and electron hole pair states.

The mean potential approximation is superior to the
classical trajectory approximation in that it responds (in an

average way) to the guantum process. As a result the time

.




evolution in the effective trajectory approximation concerves the
average enerdy, in contrast to classical trajectory approximatinn
wnich does not. At the same time the equations of motion in the
effective potential approximation are as easy to integrate as
th&se of the classical trajectory approximation. Numerical
results for alkali ionization and neutralization at metal surface
within the effective potential approximation will be presented in

a subsequent publication.22

In contrast to most other treatments of charge exchange at
surfaces (e.g. refs. 3, 13) we do not use the one electron atomic
orbital picture but the overall energy eigenstates of the atom-
metal system. This enables us to describe this process within a
curve crossing model. Thus the initial state for a neutral atom
colliding with a metal surface at zero temperature consists of a
neutral and a metal both in their ground internal states. The
state of the system following electron transfer to the metal is a

m2tal with one extra =2ieciron above the Farnl Level and a

positive icn in its grouncd state. The gnergy cifference betwesn
TWNO states is m-sc—I where 9o is the metal werk functicn, I is =he
atomic ionization potential and ¢ is the final energy of the

Transierred electron measured frgom the Termi lavel This ensrgz

difference becomes smaller at shorter atcm-suriace distance R
cecause I(R) decreases with R. In the single electron picture
this is expressed by the recuirement that the energy of the

igcnizaticn level” rises as R decreases. Wnile both pictures




vield similar results if handled correctly, we feel that the use
of total energy levels is conceptually preferable to the one

electron picture and is more accurate..

The paper is organized as follows. In Section II we
describe the charge transfer process as a curve crossing. The
effective trajectory approximation is derived by using the
eikonal approximations (Section III) and by using a staticnary
phase approximation in a path integral representaticn (Section
IV). The path integral method permits the incorporation of the
effects due to the kinetic energy operator which have not been
derived previously. In the Sections V and VI we show how to
implement the resulting equations of motion for a charge transfer
problem typical of surface science, which involves continuous
manifolds of crossing electronic states, and phonon or electron-

hole pair excitations.

Finally, in Section VII we summarize our results and
discuss the advantages and the shortcomings of the present

treatment.
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I71.2 Alkali adsorotion as a Charge Transfer

Process,

We present here in detail the physical

arguments used to

construct a curve crossing model for the alkali adsorption as a

charge transfer process described by the "chemical reaction”

Me(u®) + ACg}) » (MeT) (yi) + AT(v%)

=

L

»

- +
ere, Me, A and A denote the ground state metal, the neutral

*

kali atom and the alkali ion, respectively. (Me ) denctes the

[

a
metal surface with an extra electron: the star indicates that the
"negative jion" Me is excited (the transferred electron is placed
apove the Fermi level). In the parentheses acccocmpanving these

symbols we indicate the orbitals invoived In the charge transier
The superscripts specify the numper of electrons
The electron to be transierred is

occupying each orbital.

initially lccated in the atomic orbital J and ends up in <the

enpty metal orbital L , whose orbi%tal energy (with rescec: tc the

E ~ g e

Termi level) is L There is an infinite number of final states
*

z .
0T eacn
s lila

and final states specified by Zquation {2.1) we use the Ferml
snergy of zhe surface as a convenlient point c¢f reference Since
in all the -elewvant experiments tne sampie s grounded, the Ferml
level is not changed when the surface gains an elecirsn COr when




it is disturbed by the approaching ion. The potential surfaces
discussed below correspond to electronic energy levels of the
combined metal-atom system and not to single electronic orbitals.
The emergy difference AV&(R) between the final and the initial
states specified by Equation (2.1), at a fixed atom-surface
distance R and for fixed Ea' is the energy I(R) required to
ionize the atom, minus the energy ¢m - € recovered by placing
the electron in the orbital wa' The jonization potential I(R) is
given by Iw + Vi(R) - Vn(R) where I°° is the ionization potential
of the isolated atom and Vi(R) and Vn(R) are the icn-metal and
the atom-metal interaction energies, respectively. If the ion
binds more strongly to the surface than the neutral we have I(R)
< I,. In what follows we assume this to be the case. Note that
the work fun.tion ¢m appears, rather than a local work
function.23 This is because we define the ionization potential
I{R) as the work required to remove the electron to infinity;
therefore we need the work recovered by taking the electron from

infinity to €

The energy curves corresponding to the initial and the
final states of Equation (2.1) are shown in Figure 1. We have
assumed that the energy curve corresponding to the initial
(neutral) state has a small attractive well and a rapidly raising
repulsive part. The ionic curve can then be gualitativelwy drawn

by using the expression

P T R P

A S b




AVQ(R) = I(R)—¢m+ea = Iw+(Vi(R)—Vn(R))—¢m+ea, (2.2)
which gives the energy difference between the ionic and the
neutral curve. At large particle-surface distances the

separation between these curves .is

Ava(m)

[
—
[
A2
+
m

{(2.3)

in what follows we call AVc(w) the asymptotic mismatch of curve

. Using this expression we can rewrite Equation (2.2} as

AVa(R) = AVG(w) + (I(R)—Im)) . (2.4)

The energy difference AV&(R).becomes zero at the distance

R, given by

(o4

If this eguaticn has a solution the neutral and the ionic curves

']“

cross {curve I, igure 1) at Ra and, at that distance, <he

initial and the final states of Eguazicon (2.1) are degenerate.

= -
b (v7) is most likely to occur at Rax
- 3 I & e "o s & - 1124 - s
The crossing occurs cnly if the "image effects contalined
in %he Term I(R )—IJu are able T2 compensate the asymptotic
(o 4
i a PR

'
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s soluticn SC(R,t), obtained after specifying classical initial
:nditions, is the classical Hamilton's principal function, or

classical action.

,_.
i

To estabplish the meaning of the conditions (3.12) and
3.13) we take matrix elements with respect to the amplitude A tc

urn the operator equations into numerical ones. Since we expect

fie|

! to behave nearly classically we use for the wave function E

5
3.10) a Gaussian forma‘ defined by

- - 2 )
= - R-t + .
SO(R,t) at(R Rt) ‘hlnCt (3.15)
and
) =P -R + .
S(R, ) t(R Pt) Yy (3.18)
where
C. = (2a_/mn) /4 (3.17
T t
Here &y 2., Rt and Y, are real functions of time and CT_ is
“nhe normalization constant appearing in Zg. (3.10). The zmeaning

91
D
rh
[6]
o
b
Q
b3
s
8]
(o]

oI these functions can be understood by caomputing th

matrix elements:

. - . .
SO O(R.%) RU(R,%)ER = <R>=R_ (2.18)
[
<F> = D (3.19)
T
z 2 .
<IE-2_)%>= R/4x, (3.20)
- ~
<(P-P_1%> = no (3.22)
< o -
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III.2 The use of the eikonal method for generating classical
trajectories in the one state problem.

We review here the manner in which the eikonal method
generates a classical trajectory in a simple one dimensional, one
electronic state problem. We use for the wave function the form

w(é,t)=ctA(é,t) exp(iS(R.t)/ﬁ)sexp([so(é,t>+iS(R,t>J/h)
(3.10)

where the amplitude A, the eikonal S, the normalization cgnstant
Ct and the function SO are real. We use the notation R when the
position of the particle is a guantum variable, to distinguish it

from the classical trajectory R(t). Inserting $(R,t) in the time

dependent Schrodinger equation leads to

. s, . _ 3S
[i 35 /3t + 33)A = H(R, P + =3) A, (3.11)

where P is the momentum operator and 3S/3R is an unknown operator
(which is diagenal in the coordinate representation).
If we assume that
Z _y 2 - .2
(P + 3S/3R)~ = (3S/3R)

and

. : s ; . . 30
the eguaticon (11) reduces to Hamilton~-Jacobi Egquation ]

3S,/3%t = H(R, 35/3R) . {3.14)

e e e e e e T =L . S e Lt Lt -
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If tne ihcident kinetic energy is small these two trajectories
are rather different. Eguation (3.8) gives small changes in

velocity, while Eguation (3.9) strongly accelerates the particle -

as 1t approaches the surface.

The fact that in most practical cases the amplitudes cl(t)

and cz(t) are both non-zero and the motion of the nucleus takes

place simultaneously on both surfaces gives rise to interesting

complications. A more realistic description of the nuclear
motion requires the use of a new kind of force F(CI'CZ)' which
depends on the amplitudes ci(t). A dependence cn }cifz, i=1,2,

alone would be unsatisfactory since it eliminates guantum
interference effects. Neither Eguation (3.8) not Eguation (3.9),
nor any simple average of the two would be satisfactory.

This deficiency of the trajectory approximation is not
confined to the charge transfer problem discussed here; it is a
general problem to be faced whenever a degree of freedom that we
wish to treat classically is strongly coupled to a guantum degree -
of freedom x.zg A reasonable method of groducing an ioproved
trajectory approximation is to take the classical limit in R
wnile treating x fully guantum mechanically. There are several
ways of doing this and they can lead to differert "classical

mechanics" for the variable R. We present here a "mean

trajectory"” approximation, obtained by using an eikonal

PR SOy

1]

pproximation (Sed¢tion III) and a path integral method (Section
V). A more elaborate method using multiple Gaussian wave L

: 22 .
cackets will be presented separately.

ek AT
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(t) = H_ (R(t)) = [dx¢](x,R(t)) H

HiJ ij e(X.R(t))¢j(X,R(t))

(3.7)

Hll and H22 are the ionic and the neutral energy curves,

respectively, and le is the coupling between them. The matrix
element le given by Equaticon (3.7) is non-zero because the
states ¢i' i=1,2 are diabatic. . We have neglected here, as
customary when using diabatic states,27 terms containing the time
derivatives of the wave functions ¢i. We assume throughout this

paper that the dependence of Hi (R}, i,j=1,2, on R is known.

J

In order to solve Equation {(3.86) we must propose a method
for computing the dependence of R on t. If the incident kinetic
energy is much higher than the variation of Hii(R) with R and the
difference H22 - Hll' we can use a straight line trajectory and a
hard wall reflection from the surface. At low kinetic energy,
such as that involved in the processes considered here, the

choice of trajectorv is rather difficult. 1If the particle stays

neutral throughout the collision process then R(t) is given by

3H22(R(t))
SR(t)

mR(t) = (3.8)

Zf the particle is ionic'throughout, then R(t) should be given by

3H11(R(t))

mR(%) = - — R . (3.9
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a classical field. 1In what follows we alsoc use é to dencte the
nuclear position agpearing as an argument in the wave function.

The state w(x,é) associated with the Hamiltonian H(x,é)
depends on both x and é. If two electronic states ¢l(x,§) and
¢2(x,é) (2 for the neutral and 1 for the ionic state) are
sufficient to describe the systeﬁ then

-

$(x,R) = x (R)&, (x,R) + x,(R)$, (%.R), (3.3)

where xl(R) and xz(R) are nuclear wave functions. In the
trajectory approximation the total wave function is obtained by
replacing R in He(x,R) and V{x,R) with the trajectory R(%) 22?

the nuclear wave functions xi(R) with the amplitudes ci(t):
$(x,t) = c (1), (X, R(T)) + ()0, (X, R(E)). (2.4)

Inserting Equation (3.4) in the time dependent Schrodinger

equation, and assuming, for simplicicty, that

J ¢i (X.R(t))¢j(x,R(t))dX = sij ' (3.5)
ieads O
ihéi = Hii(R(t))ci(t) + Hij(R(t))cj(t) j.i=1,2 (3.86)
(1=3)

P
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III THE MEAN TRAJECTORY APPROXIMATION DERIVED BY USING THE
EIKONAL APPROXIMATION.

IXI.1 Introduction

In order to séecify in the simplest manner the reasons for
the present work we first consider a model in which only two
curves are important. The dynamics of such a system is
considerably simplified by making the so called trajectory

3,4,6,8,9-13.27 _hich is briefly described below.

approximation,
Consider a system with two kinds of degrees of freedom denoted x
and R. In our case x denotes collectively the coordinates of all

the electrons and R is the surface-atom distance.

The full Hamiltonian for this system can be written as

2 4 He(x,i) : (3.1)

H(x,R) = (K%/2m) ¥
This is the sum of the kinetic energy of the nuclei and the
electronic Hamiltonian He(x,R) which contains the kinetic energy
of the electrons and the interaction energy between electrons ang

nuclei. The trajectory approximation uses the Hamiltonian
H(x ,R{(t)) = H_(x,R(%)) (3.2)
where R{(t) is the position of the atom, whose time dependence is

given by classical mechanics. Note that while R

appearing in Equation (3.1) is an operator, the gquantity R(%t) is

o b oa et
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the absence of the approaching atom or ion. The local work
function ¢ (R) which is affected bv the approaching species also
plays an important role, but only in the czlculation cf the
matrix elements which induce the electron transfer. 1In this

paper we assume that these matrix elements are known for all R.

PR S W VA S S P IAT P AP A AL AP -A-'li'.'",~' N . o Y VIR,
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surface residence time can be included by allowing the ion to
recapture the lost electron on its outgoing trajectory. A finite
surface residence time can be simulated by adding a rate of

disappearance of the electron from the surface region.

We conclude this section with several remarks. First, even
though we have sometimes used a one electron language, the
present description is not a one electron model, and the states
used here are correlated electronic states of the metal-atom
system. Second, even though we use the terms ionic¢ and neutral
throughout the paper, the model is not gredicated on the
assumption that the diaﬁatic curves27 are purely ionic or neutral
at all atom surface distances. Preliminary calculations28 using
the Generalized Valence Bond and the Hartree-Fock method for Na
adsorption on Ni clusters show that the "ionic" states are not
purely ionic. Nevertheless, the dynamic theory developed here
can be applied without modification to whatever states are
produced by quantum chemistry. The labels ionic and neutrals can
still be used for those curves which lead to alkali ions or
neutrals at large atom-surface distance. Third, we have used
throughout, for simplicity, a language valid for the one

dimensional case. However, all our remarks can be extended to

three dimensions without difficulties. Finally note that the
potential surfaces for the motion of the neutral atom and of the ; iR
ion are characterized by the local ionization potential I(R) and

the work function o, - The latter corresponds to the surface in

P RS AP W S S )

* - - - Ce e A= et et . .
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(i.e. large €. large asymptotic mismatch AVa(w)) end up deeper
into the ionic well than those occurring at large Ra, and

have a smaller chance of neutralization, therefore they have a
larger trapping probability. Furthermore, the probability of
trapping goes up with ¢m—-I°° since this forces the ionization to

cccur at smaller values of Ra.

This qualitative pilcture can also be used to understand
coverage effects. As alkall atoms coverage is increased ¢, is

lowered dramatically 235

and ¢m—Iod becomes negative. The alkali
atom cannot be fully ionized and adsorption must occur by usual
chemisorption. The desorption process must occur exclusively
through neutral desorption until the coverage is lowered so much
(by desorption) that-¢w—1m becomes positive and both ion and
neutral desorption become possible.. Such behavior is observed,

for example for K desorption from Ni(lll)'26

Interesting situations appear when the surface\residence
time of the transferred electron is comparable to or larger than
the collision time. This might happen either when the electron
is transferred into an empty surface state with a lifetime TZTC,
when the kinetic energy of the incident particle is very high, or
wnen the conductivity of the material is low. The surface-‘state
can be included in the model presented here as a discrete state

1

with a finite width T (P_ is the lifetime of the electron in the

state). The presence of an electron with an infinitely long
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m m _
all nB smaller than na given by ¢w—na-1“—min &i(R).

A newly formed ion starts interacting with the thermally
excited electrons as soon as it is produced. The rate of
neutralization is the guantum mechanical transition rate to the
neutral curve labelled by na, multiplied by the probability that

n, is thermally occupied.

B
We can now summarize the overall dynamic picture for the

case rr<<rc and ¢“-Iw>0. There is a finite probability that the
incident neutral is not ionized, in which case it will scatter
back into the wvacuum. The ionization brings about some
complexity. If it takes place by a transition to the ionic curve

| labelled by «, the electron is placed in the empty metal orbital T
€ from where it promptly moves into the bulk and disappears. If
the ionizing transition occurs to a curve « 'for which AQ=K-Avq<O
(i.e. the kinetic energy of the neutral is below the jiocnic curve
«) the ion can escape from the surface only by subsegquent
neutralization, caused by tunneling of thermally excited
electrons (since the ion crosses the neutral curves shown in
Figure 2). The chance of neutralization depends on the kinetic
energy of the ion. A low kinetic energy ion is deep in the ionic
well and can cnly undergo transitions on the neutral curves
located below it, which correspond to larger values of n_,

therefore to smaller probabilities that nB is thermally occupied

by an electron. Ionizing transitions that take place at small Ra

o A a A




Me(yl) + a% ¢

8 Y

Here Me(wé) represents the

electron in the orbital wa

.

°) o Me*(wg) + A(yY) (2.8)

metal having a thermally excited

whose energy n_  is above the Fermi
~

level (ns is the energy of the transition from the Termi level to
-, 0, . .
ws). Me (ws) is the metal after electron removal from v .
! ~
The energy reguired for the process descrivbed by EZguation
(2.86) is
& = - -T -
Aua(R) P ﬁg I(R) (2.7)
In Figure 2 we plot the ionic curve &,(R) and the set of
-~
neutral curves given by
' 2 R) = &.(R) + -n_-I(R 2.3
*ﬁ Qn,s( ) &1( ) P, na (R) \ )
[ o : . - . k] -
!We assunme, for simplicity that the neutral zurve is Incependcdent
b
cf Rr).
® ‘
: Is qs=0 (i.e., we consider an elesctron at the Fermi level)
b
h <hen & 3(“)"&4(“)=¢m'1m and +the neutral curve is above the ionic
o, 2
4
cne {we consider the case o _>I_ ). The neutral curve 3 andé the
lznic curve &, do 10T Ccross. b ¢m-Im=na the two curves colincide
$9r R If - >0_~I  the peutral curve crosses the lonic cne for
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(2ﬂ/h)|H12(Rd)]2p(ea) where le(Ra) is the coupling between the
ionic and the neutral states at their crossing distance Ra and
p(ea) is the density of the ionic states. The condition Tr<<Tc
precludes the neutralization of the ion by a recrossing of the
incident neutral curve on the outgoing trajectory. The dynamics
occurs as it the incident neutral curve disappears as soon as a

transition to an ionic curve is completed.

While the ion cannot be reneutralized by the electron which
was previously transferred to the surface, neutralization can
occur by tunneling of thermally excited electrons. The condition
¢,-I, > © precludes the electrons at or below the Fermi level
from participating in the neutralization of the ion:; furthermore
if ¢Q—I“>>kT only very few thermal electrons have enough energy
to neutralize the ion rescnantly and the neutralization rate is

extremely small. The behavior of the ion in the extreme case in

which Tp<<T, and ¢ _-I >>kT, depends on the value of A°< K -
Ava(w), where K is the kinetic energy of the incident atom. If
the ionization occured by a transition for which Aa < 0 the ion
is trapped; if Aa > 0 trapping occurs only if the ion loses (to
phonons or electron-hole pairs) an amount of energy larger than
Aa. Otherwise the ion escapes into the wvacuum.

If ¢w - I°° > 0 but is not much larger than kT the ion can

be neutralized by tunneling of thermally excited electrons. This

process can be described by the "chemical reaction”

—

Cold

DR
a2l a4 4 a
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{x}, hence the ionic curves, constitute a continuous manifold, so

that as the neutral approaches the surface the neutral state

Ei crosses ionic curves over a large distance range.
p .

Let us assume that a transition to the icnic state « has

occured at Ra’ while the neutral was on its incoming trajectory.
This places the transferred electron in the empty surface orbital
€ The subsequent dynamics depends on wnether the ion is
neutralized on the remainder of the trajectory. Since we treat
the transition to the ionic state o« by full gquantum mechanics,
rather than a one-crossing model, or perturbation thecory, the
transition amplitude contains the effect of all the crossings
back and forth between the two states, taking place while R is
close to R«. The ion hits the wall, turns around, and approaches
again the point Ra where is could be neutralized by the electron
initially placed in €’ if that electron has not already moved
into the bulk. In what follows we assume that surface residence
time T. of the transferred electron is much smaller than the
cellision +time T Since, strictly speaking, the electron is not
transferred into a one electron state wz but in a localized wave
packet centered around €. the electron moves towards the bulk

with the group velocity of the packet. The surface residence

time of interest here can be defined by 1r=L/v where L is the
displacement required tc cancel the overlap between the wave

» racket and the hcole state in the atom and v is the group

-

velocity. An_ equivalent statement is that Tt _~is roughly given by

I
-
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mismatch Ava(w). If the asymptotic mismatch is zero than
Egquation (2.4) gives I(R«)=I°° and the crossing occurs at very
large values of Ra. As the mismatch is increased, the crossing
point moves to smaller values of Ra' provided that Avu(m)>0.
Obviously if Ava(w)<0 the curves cannot créss at any distance.
Also if Ava(w) becomes too largé the image field cannot
compensate for it and the curves do not cross. We denote by

AVE(@) the maximum value of AVa(m) that can be compensated.

The ionic curves can thus be characterized by any of the
following parameters: the asymptotic mismatch Avq(m), the
crossing distance R&, the orbital energy €, ©r the index «.

When Ava(w) goes up, Ra gets smaller and € increases.

In discussing the dynamic processes possible in this system
of curves we assume that we have a procedure for generating a
classical trajectory R(t) describing the motion of the incident
neutral. This incident particle can undergo transitions to any
of the ionic curves as long as they cross the neutral one. A
transition to an ionic state Ava(w) tends to take place near the
crossing point Ra. At any other point R there is an energy

mismatch Ava(R), which means that after the transition to the

curve o« the nucleus must change suddenly its velocity. Since the
electron transfer cannot provide a large momentum transfer such
an event is unlikely unless AVG(R) is very small, that is, unless

9 R is very close to Ra' It should be kept in mind that the states

T T N T L A e
KRN N .
o L
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-

We see that Rt and Pt are the expectation values of the position

and momentum, Y is a phase, and «_ is proportional to the

t

quantum fluctuation of the morentum around its exbectation values

and inversely proportional to the fluctuations in the position.

Taking the matrix element of the condition (12) with

respect to A leads to

i X . A . 2 .
FA(R,t) [P + 3S/3R]% A(R.t) dR = JA[EEJ AdR  (3.22)
IR

If we use, as an approximation to S the classical action SC, and

the classical =2quation P{t) = 3Sc/3R(t), we can easily perform
the integrals in Eguation (22), to obtain
hoa, << P2 (3.23)
t t

We have identified P(t) = asc/aR(t) with the expectation value of
the momentunm Pt’ and this will be justified later. The condition
(3.12) is thus equivalent to the requirement of Eg. (3.23) that
the guantum fluctuations of the momentum are much smaller than
its expectation value.

Treating the condition (3.13) in a similar manner requires

the evaluation of

IA(aso/at)Adé << [A(3S/3t)AdR (3.24)

PP I S S )
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integrals leads to

fA(aso/Bt)AdR=O

and

as . .
J‘A—B—%AQR H_(R(T), P(1)) .

We have replaced 35/3t with asc/at which in turn

the classical Hamiltonian Hc. Furthermore, we u

{3.10) for So‘ Clearly condition (3.24) is alwy

since the classical Hamiltonian is positive.

The condition discussed above establish un
circumstances we can replace the eikonal S({R, %)

classical action SC(R(t), P(t)). So far the cla

appears as a device to compute the eikoral: the

guarantee that the classical trajectory has any
the motion of the particle as given by the time

Schrodinger equation. For example, if «

T

and tnh

D

packet becomes a planar wave, conditicn

fulfilled. However, it is impossible %o describd

a partizle in a planar wave state by any kind of

~néer which

Hamilton-Jacobi eguation approximates the

system can be ootairned

by using

{3.25b)

is equal3o to

sed Egquation

as satisfied

der what

with the

ssical mechanics
.e is no
relationship with
cependent
Gaussian wave

is

o]
th

e the behavicr

o~
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Egquations (3.15), (3.16) and (3.10), and the Ehrenfest theorem32

f d x o - - x - 5V - -
S FT J¥ (R, £) RY(R,t) drR = -J¢¥ (R, 1) = $(R,t) dR (3.26)
- c

According the Eguation (3.18) the left hand side of the above

equation is th/dt. Since the wave function appearing in the

right hand side is localized over a spatial range given by
1/2 3-

(2i/ut) we can expand V(R) in Equation (3.26) in powers of R
R,, and this leads to
¢R, (R, 83V(Rt) ,
- = - = - = <(R-R_)"> . (2.27}
é= 3R 2 . 3 t
t ORt

the expectation wvalue Rt of R satisfies the classical ecuation ol

motion 1If the seconu term in Eguation (3.27) is much smaller than

the first. Using Egquation (3.20) we can write this ccondizion as S
4!3 ~
s VIR, SV(R,)
(r/8a,_) — << = 12,23,
- 3R 3R,

2% zconditions (3.22), and (3.28) are satisfied, %the eixkcnal

ot
BB

iz given by the classical action, and the ra era

1}

0

n
L]

3

2

.

h
rt
b

assical mechanics are a reasonabdle descrizticn of the nea

>

N

v
<

0O

[

geantum motion of the svstemn.
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14

dure can
be used to generate a "classical mechanics" for cases in which
the variable R to be treated classically is strongly coupled to a
guantun companion x, and we apply this idea to the case of a two

In what follows we postulate that the above proc
state system.

I1I1.3 The application of the eikonal method to the two
state problen. )
To apply the method ocutlined at III.2 we assume a wave
k function of the form

w(x,ézt) = A(x.ﬁ;t) exp(is(é,t)/h)

- - - - (3.29)
= (xl(R;t)¢1(X.R) + xz(R;t)¢2(x,R)) exp{iS/h}.

Here S({(R,t) is an unknown real function (the eikonal) of the

nuclear coordinate R and the time t, and xi(R,t) i=1,2 are the
nuclear wave functions when the system is in the electronic stace
o.(x,R;t), i=1,2. To derive the approrriate classical limit for

the nuclear motion we eliminate first the electronic degrees

a
th

freedom from the problem by introducing the wave functiocn
$(x,R;t) given by Eguation (3.29) in the time dependent

Schrodinger eguation, and by operating on the resulting eguaticn,

. -

from the left, with [dx¢,(=x,R), i=1,2. We obtain

. as 3 - - 3s.2

= = + iA =1 x, (R, t) = {(i/2m){[?P + —=] + H,.(R)}Ix
3t 3t 1 3R 11 1

* H L, (Rix,

and
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[-as/at+iha/at]x2(§;t) = {(1/2m)[§+35/a§]2+522(§))x2
(3.30b)

+ H21(f‘.{)xl
We have neglected the matrix elements containing 3¢i/3R or
82¢i/3R2 since we work with a diabatic representation and assume
that the term le is the largest coupling between the electronic
states. The matrix elements Hij(é) are defined by Eguation (3.7)

and the orthonormality condition {(3.5) has been assumed.

The classical limit is taken by assuming that ik 3xi/3t +

(3S/3R)2, and the

©

(35/3t)x; = (35/3t) x, and (P+3S/3R) 2

equations (3.30a,b) become

- - .2 .
-(oS/at)x1 = {(1/2m)(3S/3R) + Hll}xl + h12x2 (3.31a)
and »
_ .2 . iy
-(BS/at)x2 = {(1/2m)(3S/3R)" + H22}x2+d21x1 . (3.31Y]

Multiplying Equation (3.31a) with X4 and (3.31b) with X, and

adding the results leads to

-3S/3¢t = (l/2m)(3S/3R)2 + V(R; t) (3.32)
with
2 2 2 No-1
- z - x
V(R;t) = Z% Z> xiHlJ(R)xj g Xy Xy (3.33)
i=1 j=1 i=1 J

Zguation (3.32) is a Hamilton-Jacobi equation with an "effective

sotential" V(R;t) which depends on the pctential energies H,,(R)

of the two states, on the coupling Hi2(R) between them, on the

-1

* =
probability xixi(zx‘x‘) that the particle is in the state i,
- -

e

KR
VI Y S
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(i=1,2) and on the "coherent term’ x; Xj which introduces the
effect of guantum interference between the two nuclear states.
As in Section III.2 classical mechanics appears only as a device
to compute the eikonal.

Using Eguation (2.32) we can rewrite the Eguations ({3.20)

- - 2 -
indx,/3t=(1/2m) (p7+ 22 2+ B 25 y(m, 1))y,
3R - 3R -
(3.353)
- Hll(")x1+d22(R)x2
and
3X - - .2 -
iy 3t2 = (1/2m)({P%+2 22 » + -il °-§ - V(R %) )x,
3R 3R
H22(R)x2+ﬂ21(R)xl (3.34b)
I¢ the wave function is such that the ncmentum fluctuaticns are

small compared to the classical momentum given by Zguation

13.32), and the functions of coordiinate S(=R,t), H;j(R) ané V(R, %)

4 N

vary smocinily with R over the spatial scale set by the guantum

>

fluctuations in coordinate, we can replace P and R in Eguaticns

{3.34) with their classical values P(%t) and R(%). Turthermncre,

<he diagonal matrix element commcn to both eguaticns can te

eliminated by intrcducing in the wave function V{x,R;t) defined
oy Zg. (3.29) the appropriate rhase factor. With these changes

VY
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iﬁxi(t) = Hii(R(t))xi(t)+Hij(R(t))xj(t) J.i=1,2 (i=j)(3.

()
(61}

and the effective potential is

2 *® *
Ty (0)xg (0 H J(ROE)/T g (O)x (8.
j=1 J . i

W
w
m

Yere the nuclear wave function depends on time onlvy.

We can now summarize the result obtained by using the
eikonal method for the two state problem. The guantum amplitudes

xi(t) are given by the same eguations as those of the customary

trajectory method (Section III.1). The "classical” eguation of
motion is however deeply modified since the potential energy

given by EZquation (3.36) is neither Hll' nor 522, nor a simple

classical average I X4 xiHii(R).
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Iv PATH INTEGRAL FORMULATION

As we have already mentioned our strategy in generating
improved trajectory enproximations is to formulate the preblen
guantum mechanically and then to take the classical linit in the
degrees of freedonm whose moticn is to be described by a
trajectory, while maintaining a quantum theory for the other
variables. The classical limit can be taken by a variety of
methods. When applied to all the degrees of fresdcm of a one
state problem, all these methods lead to Newton's eguation.
However, the same methods applied to a many state problem in
which some degrees of freedem are treated guantum mechanically,
lead to different trajectory equaticns. The acceptance of such
approximations and the choice of the best among them is based on
our prior intuitive expectations of what such a mechanics should
De, on their agreement with the experiments (where reliable
comparisons can be made) and on their computational advantages.

-

Given this situation it seems to us worthwnile to explcore un

o9

er
wnat circumstances various methods of taking the classical limit
lead to the same results. Here we show that within a path

integral formulaticn the thecory derived in Section III is
g

recovered if we use a coherent state representaticn to describe
the electrenic states and then treat all degrees I Ireedom

classically (by taking the staticnary ghase approximaticn).

Ry
.

der the Hamilzonian

bae

e Cons
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N N N
02
H = .-Hnn(R)|n><n| + Hnm(R)|n><m| + ¥ fn><n|
n=1 n,m=1 n=1

(4.1)

where |n> are the electronic states, and R, P and M denote
nuclear position momentum and mass, respectively. This
Hamiltonian corresponds to a diabatic representation in which the
different electronic states are coupled by Hnm and the coupling
due to the nuclear kinetic energy operator is disregarded. We
wish to derive a path integral representation for the propagator

-(i/h)Ht

K(RYy. R ¥ 1t} = <RyJe IRJ¥S> (4.2)

(o]

where |Ry> denotes a state of the system in which the electronic
state is =X xnln> and the nuclear state is given by the
eigenfunction |R> of the nuclear position operator. To this end
we use the resolutions of the identity operator in nuclear space
SAR|R><R| = 1 (4.3)
and in the electronic space
faply><y| = 1 . , (4.4)

Here

' N d(Rex_)d{(Imx_) )
Fde = (N+1)! j [ T Z L

N
where the prime denotes integration under the restriction

2
- =1
Zix lT=1,
n

AN #A_JAIJJ_A;‘_A
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The identity (4.4)-(4.5) may be easily proven by showing

t n Yly><yin> = Pofr(as ) (X~ i1 ®_+i- = .
hat <n|{fdy|$><Y |m> {N+1)! [ (dwldyl/v)un ;;n)(,:m *]m) 8 o

The path integral can be construsted in the usual way

=1 3
where At=t/L, ¢_. = ¢{Lt.), t.=t _+jAt and where R, and ¢. stand for
J J J © . L L
R and ¢ at time t. Focussing now on the matrix element
<R:w~JehAt/hJRJ ,wj 1> we evaluate its electironic part first,
JoJ ~4 -
Xeeping R and P in the Hamilicnian (4.1) as parameters. Tor
ccmpleceness we outline the procedure in Appendix A. The resul:x
is
-iHAt/F
<R,0.je at/a g 1bi> =
J J J (4 ?)

T S S N U A I S S PP S AP R L P I P P S PR R I T P s S RS T
Bl o P N T T T A I RIS SRR
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Here P and R are operators in the space spanned by the nuclear

wave functions, and <wj[@j> is given in terms of the coefficients

x by
P> = a_
<¢j|wj> = <(i xn(tj)|n>)|(dt i xn(tj)ln)>
. _ (4.8)
= I xy (£5)%05)
V.(R) is
o
= 2 *

The nuclear matrix element in (4.7) is now seen to take a
form which is normally obtained for a guantum particle moving
under the influence of a potential V(R). Evaluating the R matrix
element in the standard way and inserting it into (4.6), then

taking the L - » limit, yields

Ry *
K(Ry,R v 1t) = | pypRe S (R R b, 1t) (4.10)
Rowo
with
T
S(RU,R_U_1t) = [ de'L(R(E' ), RIS ), x(t), x(t'),£')  (4.11)
t
[o]

anc the "Lagrangian" L given by

L= 1Tk ox e {=MRZ- I x_{%H__(R) -
= nxnxn'h 2 ; Xal ®an'’
. (4.312)
T 8 .
22 x, xmnnm(R)} ;
nm

the symbcls Dy and DR are

LI - S _ 1 W R SICIRY W BN P SR
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L-1 N d(Rex,(t.))d(Imx,{t.))
— 173 1'73
Dy = lim | | ((N+1)!] ] o (4.13)
Lew =] 1=1
and
[ L L-1
= 3 __._—___.M !
DR = lim {(] TR AN 1 dR(tj)) (4.14)
L»x

Eguaticn (4.10) is an exact representation of the propagator in

terms of a path integral over all the paths which lead from the

state R _, = z n> ti t b ir =
at o wo xn(to))n at time tO o the final state R and ¢

an(t)|n>, at time t. Having found this form it is of interest

to look for the optimal path, the analog of the classical limit,

as an approximation to the path integral. For this purpose
5 = = 3 = ) =
define Xn Rexn, Yn Imxn and replace in Eguation (4.12) Xp
x .
Xn + 1Yn and X, = Xn - iYn syverywhere. To satisfy the

restriction len|2=l we may add to L a term XZ(Xi+Yi) where X is

a lagrange multiplier, but it turns out that this does not change
the result. The optimal path is the sclution of the Euler-

Lagrange equations 9of moticon generated by minimizing the action

3L _d_3L _ 4

3R dt 3R

3L d 3L _ . . 3L _ 4 3L _ ..

3R at 3x. - % 37 TSy =0 (allm) . (4.15)

These yield +the fcllowing Eguaticns of motion

. L VIR, {x_
= - 1
R M dR (4.18)

[ IPNAPGALD a. TR G Do T W I P Sl Y - L PR . . PR
M-II omating . L L ),

Aade ot S
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- _ _ 1 < e ar S e
X, = FlH (R)x  + ; Ho (RIx, ] (n=1,...%) (4.17)
with the effective potential
- 2 . .
V(R,{xn)) = i Hnn(R);xnl + 2 Z ﬂnm(R)anm (4.18)

To obtain Eguaticon (4.17) we have recombined the ecuations

obtained for kn and ?n. Zquations (4.16)-(4.18) are identical %o

the equations of moticn derived in Section III.

The following comments should be made with respect to this
derivation: (a) The same results are obtained if instead of
3
i iv r i o)
replacing Xn by Xn+..n we regard Xn and x, as independent
variables and use the Euler-Lagrange eguations in the fornm 3L/3xn

- d/dt(az/ain)=o.

(b) In the absence of coupling the nuclear motiocn (i.e. 3if
we were evaluating the %time evolution of an N-level system) the
resuliting EO0S (4.17) is just the Schrodinger eguation for this
system. Obviously the cptimal path is over determined by the
requirements that {t )=y _ and ¢(t)=¢ are given, and generallv we
will not £ind a path that will satisfy both these reguirements
and Zg (4.17). The resul: may be still interpreted in the
following wavy. The prcbability amplitude to be in a final state
Y. starting from an initial state v, may be written in thes fcrn

jju<w,,w>ﬁ(w.wo!t). The optimization procedure replaces this
LY

1

2

Je_e_a e e s s A dA
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;econd mechanism consists in direct energy transfer from the
noving ion to the electrons in the metal, and it is discussed
rere in detail. This also has two distinct aspects. One
corresponds to electron-hole pair excitations caused by the
sudden creation of the ion through electron transfer and it was
discussed previously in a different physical context by Gadzuk

16

and Metiu43 and Schonhammer and Gunnarson. The other

corresponds to electron-hole pair excitations by the ionic motion

and was considered, for example, by Suhl etl al.37'3” and

Korzeniewski et.al.54

In the present section we consider the effect of the energy
transfer, to excite electron-hole pairs, on the motion of the
ion. In the spirit of the Langevin approach to many body
dynamics we would like to produce an equation which does not make
explicit reference to the detailed electron-haole pair dynamics.
Since the motion of the ion drives the excitation of the
2lectrons, it must provide the excitation energy: therefore, the
desired equation must contain a friction term. Furthermore, the
interaction of the ion with the polarization fields caused by the
thermal fluctuations of the electron in the metal must be taken
into account through the presence of a random force in the
equation of motion of the ion. Since the metal screens the ion
fieid we can assume that the screened interaction causes a small

2¢ctrons in the meza.l

perturbation ian the mot.on of the e

d the friction kernel.

[{1]
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The coupling to the lattice affects not only the nuclear

hotion but also the transition amplitudes Ci(t) since Hij(R'Y'Xo)
afe now function of the stochastic variable Y. Both the crossing
point and the coupling strength are random variables. The
observable quantities of the theory must be computed by running

many stochastic trajectories and averaging the quantity of

interest over them.
VI.2. Energy Loss Due to Electron-Hole Pair Excitations.

Recently there has been a lively interest in the manner in
which the excitation of €lectron-hole pairs in the surface

3,4,9,10,12.21,35-35
Two

influences the dynamics of adsorbates.
types of mechanisms are possible in the problem of interest here.
In the first, the electron jumping from the atom into the metal
interacts with the electrons already there and it is
inelastically scattered. If the interaction partner is below the
rermi level the interaction can excite an electron-hole pair.
This is similar to a shake-up process and it could be represented
by giving each ionic state a width which corresponds to the rate
of energy loss from the transferred electron to the electrons
below the Fermi level. The transferred electron can also
interact with the electrons thermally excited above the Fermi

level and this leads to either energy loss or gain. This can

also be represented by giving the ionic state a width. The

e
PSP
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Md3v/dt = - x. 2 aH. (R.Y.X )/3v
: - Xy 117 %,
x® - —
- 2Re XIXZ oHlZ(R.Y.XO)/aY (6.3)
N
«+ Z K Xu
p=1 M
Here K“ is the force constant coupling X“ to Y. The egquation of

motion for the secondary atoms is that of the harmonic lattice in

the absence of the ion. Xo represents the coordinates of the

secondary atoms in their equilbrium postions.

Following the Adelman-Doll procedure we can eliminate the
secondary lattice atoms to obtain a Langevin equation for the

primary atom:

2

x
Mdly /de? - - %, i 2(3H,/3Y)-2Re x| x,(3H ,/3Y)
(6.4)
t
= L oy(t-t')Y(t')dt' =~ F(t)
-0

The friction kernel is proportional to the linear response
function of the lattice in the absence of the primary atom. The
random force F(t) is Gaussian and its correlation function is the
Green's function of the secondary lattice in the absence of the
primary atom. The Green's function and the linear response
function are related by the fluctuation-dissipation theorem. The
Langevin equation can be solved efficiently by modeling the

n and generating Fi%) on the cocmputer as shownh b2y Shugar

A

o .

., ,v
LY S L DY T W Y
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under the influence of the effective potential

2 2 .
V(R,X:t) = & z xi(t)x.(t) H, . (R.X) . (6.1)
. . J 1)
i=1 j=1
We assume here that the neutral curve, which we denote H22. is
independent of X. In other words, the energy lost by the neutral

to phonons is disregarded since in this context it does not have
marked effects on sticking. It can however be easily included,

if necessary.

In order to derive a Langevin equation for the present
situation we follow Adelman and Doll33 and divide the lattice
atoms into a primary zone which suffers the brunt of the
collision with ion, and a secondary zone which interacts with the
primary atoms only. For simplicity we take only one primary atom

and denote its coordinate by Y(t); the other lattice atom form

the secondary zone and their coordinates are denoted either by

Xu' u=1,...N.when we need to specify all of them, or by X. when
they are denoted collectively. The eguation of motion for the
ion 1s
2 2 2 x -
md R/dt™ = - % Xx. X. 8H. . (R(t), Y(t).X )/3R, {6.2)
i, 5=1 i 7] ij 0

The equation of motion for the primary zone atom 1is
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V1 THE INCLUSION OF PHONON AND ELECTRON;HOLE

EXCITATION AS ENERGY LOSS CHANNELS.

As we have discussed in Section If if the kinetic energy K
o¢f the incident neutral is higher than the asymptotic energy
mismatch AQV(m) {i.e. Aa=K—Ava(w)>0) the ion fo}med by charge
transfer sticks to the surface only if it loses (to phonons or
electron hole pairs) an amount of energy larger than Aa. In what
follows we outline a curve crossing theory which include such
energy loss processes. Both consist of deriving Langevin
equations in which the - action of phonons or electron-hole pairs
generates friction and random forces in the mean trajectory

equation.
ViI.1 The Inclusion of Phonons.

We consider here the two state problem discussed in Section
©111.3 and include in both the wave function and the electronic
Hamiltonian the coordinates of all the lattice atoms. For
simnplicity we denote all these coordinates by X. and consider the
one dimensional case only. The extension to three dimensions and

more than two electronic states is straightforward.

By repeating the derivations presented in Section III.3 we
dbtain equations identical to (3.35) and (3.36} in which the
matrix elements H‘j depend on R(t) and X(t). We must now speclify

a procedure that g21ives the equation of motion for R(%) and ¥X{(<%)
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and where the prime(') denotes derivative with respect to R. In
- . . . . . . ;
' this derivative is obtained by replacing HkE(R)HEl(R) by its
R derivative with Hll(R) kept fixed). The set of eguations
(5.22)-(5.23) may be now integrated numerically if a model for

the coupling matrix elements is constructed.

P
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t
i
. Y {w dre21(r) )
S, = = gl (R)-Z,,(R)]e CatRE RV
(5.223a)
A } dte (1)
. i R - 12 5
c2= - g[“21(R)—221(R)]e . cl+ 5 ZZZ(R)C2
(5.22b}
and
mR = -((H' (R)-H' (R))(c.(2 + (H!. (R)-H' (R))]|c.|2
1] 00 1 22 “oo 2
1 2
- HOO(R) + 2Re[Zé(R)|czl (5.23)
. t
-2 § dre (t)
. ho_ 21 .
—(le(R)-le(R)—ZZI(R))e clc2]}
where
521 = sz - Hll {(5.24)
Ty = Dpy — il (k,1 = 1,2) (5.25)
H (R) H.,(R)
kE El
D, ,{(R) = PP[dEp(E) = = (5.26)
k1l HOO(R)+L nll(R)
rkl(R) = "IdEP(E)HRE(R)HEl(R)5(Hoo(R)+E—q7l(R)) (5.27)

|

hnd bk
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to those described above where we now have two discrete states !

(neutral) and 2 (surface state) coupled to the continuum of ionic
states. Tha2 neutral state coupling to the surface state leads to
the ionization of the neutral. The electron transferred into the
surface state can be recaptured by the ion (the coupling is Hze)

leading to neutralization. The mean potential for this case is

2 2 . 2 .
V(R(t)) = % L H..(R{t))x,;x,+ £ JSdep(e)[H. (R(t))x.,x
i=1 =1 ij i~2 =1 Jje ive
(5.19)
* 2
+ Hej(R(t))xexj]+IdEp(€)Hee(R(t))lxel
The classical eguation for R(t) is, as before,
MR = -3V(R)/3R (5.20)

while the equations for the amplitudes x are

I

gl— 5 (Hy  (ROEY ) +H o (R(t) )x +fdea(e)H, (R(t))x )
- - 3‘. - + g
Xy = = % (Hy,(R(%))x,+H,y, (R(T))x,+fdeo(e)H, (R(t))x,)
VR
X = = F (H_R(E))x_+H_ (R(E))x +H , (R())x,)

(5.21)

Proceedings along lines similar to those described below Ec.

‘£.4) leads to the set of egquations

P
1
4.n a4
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The above calculations allow us to write the effective

potential as

VIR(E) i) = e (8) 12 (H, (R(t))=2a()) + H__(R(t)(1-]c (1) [?).

with (5.15)
t t

cl(t) = cl(O) exp{~-(i/R) [ A(T)d1} exp{~f T'(T)dz} . (5.186)
o] 0

The results (5.11) and (5.12) may be improved by

recocnizing from the beginning that c_ (t) has an (yet unknown)

1

phase -1/h [ A(x)dt and by determining this phase self-

consistently. The result is

2 Vv
+o dE p(E)|H1§l -
A(t) = PP § — — (5.17)
e BTH (T)-H (t)-a(%)
and
+00 N
r{t) = dE p(E)lHIEl 5(E+Hoo(t)—Hll(t)—A(t)). (5.18)
-0

Since A and T are the real and imaginary parts of the self-energy
of the state 1, these eguations are reminescent of RPA results.
This is not surprising since the corrections in Egs. (5.17) and
(5.18) are of the type appearing in time dependent Hartree

approximation.

Before concluding this section we briefly discuss the case

where a local surface state with a long lifetime exists above the

Fermi level. It is easy to treat this case along lines similar

ik 2

) ak
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2
+e  dE p(E)[H, gl
E+Hoo(t)—hll

[>d
t
1}
'y
‘d
[,
[0,]
-
[

-0
anrd
-+~ 00
Tit) = n 5 4k p(E)|HlE!26(E+HOO(t)—H11(t)) (5.12)
—00
I the continuum states form a narrow band (which means that cie¢)

is zerc outside a narrow energy range) these equations will be
modified by "edge effects". A very narrcw ionic band influences

the neutral state just like a single ionic state.

¥
t
1+
rt
o3
D

The . :lculations carried out above permit Us %0 rewri

eZfective potential given by Zg. {§.4) in terms cf 'c.(=)!°, A(%)
and T(%) alone. The liast term In Zg. {(5.4) can be written as
: 2 . 2
AT ATy 1o = -1 A 3 = A “
JdE .,(_)..EE( tiiettylt o= (2 cl( LT E T (8.13)
A4e ootaLln this by ouserving that H,r{t)=?co(2(\))—5 andéd that we
neeZ =nl7 tne graclent cf H_. [(tc compute the force! so we can
tae ot = Hoh R{TY Also we use the normalization condition
— -’
fam - 2 : 2 .
MRS RS OD I I ~ Ly = 1 (8.14)
- -

3]
(n

.4) can be rewritten by

qg.

[
.
.

The niddle Two terns

axpressing x_ in terms of x. and using the approximations

cresented under the eguation {(8.7); the result is that %he wo

I

- ' - A - 1 s
Terms are egual to -2L(0)'c. iz

Ve
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is a time independent energy giving the difference between the

parallel curves H and Hoo' If we assume that the "amplitude"

EE
'HlE(t‘)cl(t') varies with t' on & time scale much slower *that the
phase p(t)-p(t') + E(t-t'), than we can replace H _(t')c (t')

with le(t)cl(t) and remove it from the integral over t'. After

that we can perform the integrdl over t' by inserting a factor

exp(+nt) n>0, to insure that the integral converges. We get
t t!
J at' exp{~(i/h) § [£(t)-e+inldT}
-0 -
(5.8)
-~ _1 t
= -(R/1)(f(t)-e+in) “exp{-(i/h) § (f{(t)-e+inldr});
-_0g

in deriving this we assume that £(1v)}) (which in our case is

Hll(r)~Hoo(T)+E) can be replaced by f£(t) and be treated as a

nearly cozstant guantity. After performing these calculations we

obtain:

iRc, (t) = [(a(t)-ir(t)le, (1) (5.9)

A(t) Re
} = lim } j dEp (E)
JN k] n=>0 Im

If the integration interval 1is priactically infinite the las<t

2(E+H (t)-H,. (%)+inl ~

H g (%)

equaticn leads to

IR R YRS N TP P Yy’ W i Tl I 10 GNP e, A U W UL A L., A e -'A:j.‘- PR VA Sl SRl SR . M PRI APT o a b LA
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]
}‘ disregarded. The effective classical interaction is given by
3 VIR(E)) = Hy (R(t))|x, (£)12 + fde p(e)[H, _(R{t))X, (€)x,(t)
* 2
" He (RIS (T1] + 148 pleM (RED e ()17

The "classical"” trajectory can be computed by using Hamilton

equations with the Hamiltonian P(t)2/2m+V(R(t)).

We can simplify these equations by following a standard
procedure used in situations when a discrete state interacts with
a continuum. W2 start by integrating exactly Eg. (5.3) to
express X as a function Xy we introduce this eguation for X in

Eg. (5.2) and obtain a closed equation for X

t
ihél(t) =7 at' G(r,t')c, (') (5.5)
-
with
G(t.t') = (-i/R) [dEp(E)H _(t)H, (t")

exp{~-(i/R)[p{t)-u(t")]}) exp{-(i/R)E(t-t')},

t
u(t) E_i [Hll(T)-HOO(T)]dT (5.6)
and -
xl(t) = cl(t) exp{-(i/h)_i Hll(T)dT} (5.7)

Here we use the fact that the ionic curves are parallel <o each
other. We pick one of them as a reference state and denote it bv

w = i+ T * = =
“oo(R(T)) = Hco(r), and write the otiers as AOO(R(T))+_, where ©

’ o - At s - RPN P D L S R T S F . R et T . e -
C - -0 R T N N et e e N e e e e et et T T T T e et P R R Lt e T T e St
PR LT Wil Wik WU SR SRAY ST Sl Sl S SRR TR VA SO Sl WOlE Vol WE A O o o - PR N R S N LRV RE N L
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v. CROSSING OF A DISCRETE STATE BY A CONTINUUM

As we discussed in Section II if a neutral atom approacihes

34

£,
fain

I}

iTe Tmanber

s

the surface it can be icnized by crossing to an i
0f states differing from each other through the final state of

Y

the transferred electron, the position of the crcssing point and

3 ~

ne amount of asymptotic energy mismatch tec be compensated. o

treat this case of a neutral curve crossing a continuum of icnic
curves, by the methodology used in Section III.3 for cne ionic

state, we use for the amplitude of the total wave function Zcg.

{(3.10) the fornm

A(x,R;€) = %, (R)$,(x,R) + fde ple)x (Rit)o, (x,R)  (5.1)

The procedure of Secticn III.3 applied to the wave function

{3.20), with the amplitude (5.1), leads to

thx, (2) = A (RO, (t) + Jde ple)E | (RID))x, () (5.2)
and

e - = R =(* rs )

PRk () = H o (R(D))x (%) + H_(R(O)x, . (5.3)

we neglect the matrix elements Hegr (e=e'), since the ccontinuun
states dc nct interact with each other In the present ccntext

“nis means %that the moticn of the ion does nic




with
1
’ s = Edt'[i<w[@> + 2 (pR- 23 - 2 WR,W)-UR, ¥)) ] (4.23)
q ! "R 2M M ‘ ¥ ’
E
where
x
‘ W(R,y) = Z Z xnxmwnm(R)
i. nm (4.24)
U(R,¢) = S = xnxm-nm(R)
nnmn

Here we have used the phase space (R,P) representation of the
nuclear part of the path integral. The EOM's for the optimal

path, obtained from the exXtremum of the action S given by Zqg.

(22), are
5 _ P 3W(R,¥) _ 3U(R,¥)
- M 3R 3R
R == (P + W(R,U))
M ’
. i o3 2 P R
x, = - % ; Lﬂnm(~) - N an( )]xm

The implications of these eguations. will be explored elsewhere.
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appearing in the equation of motion of the ion, to be related

B BRAS

through a "fluctuation-dissipation"” relationship.

To include in the curve crossing problem of interest here
the effects of electron-hole pair excitation we use a formulation
developed by Leung et. al.,55 who showed that within the Randonm
Phase Approximation (RPA)} the electron gas can be "bosonized" so
that its Hamiltonian, in the presence of an ion located at E(t).
is
.2

+ *
= . v t <V _(R(t :
He_h f ho, ng g 2 Vg (RETIng g Rtt)in }ic, (t)

{6.5)
Here n; and nq are boson creation and annihilation operators and
uq is their frequency (corresponding to the electron-hole pair
excitation frequency). The quantity icl(t)l2 appears in Eq.
(6.3) because the electrons of the metal interact with the ion
only. The frequencies uq and the screened interaction Vq(ﬁ) are
expressed in terms of the generalized eigenvalues and

eigenvectors of the frequency dependent, non-local, longitudinal,

) . - > . )
dielectric constant e(r,r';w) of the metal (with surface) given

by RPA.'Sa The solutions wq of the egquation
- -»
det e(r,r:wq) = 0 {6.6)
provide the boson frequencies. The generalized eigenvector
- .
§qlr). given by

POl N NI S S N
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h e(?.?;uq) gq(?')d?' = 0 (6.7)

L are used to obtain Vq(R(t)) from the equation

2 -1

Vo (R(T)) = ez 7§ IT - R(t)! gq(?)d? ) (6.8)

Vq(R) is the screened ion-electﬁon coupling. Here e and Ze are

electron and ion charges.

We now wish to obtain the egquations of motion in which the
coordinate R(t), its conjugate momentum P(t) and “q and n; are
classical variables moving in a mean potential analogous to the

one obtained in the previous sectians. The procedure used in the

previous sections leads to the following classical Hamiltonian

B (R,P * Pz b :
. = S
C( Pom.n .xlxz) > m aw n _n

q 9 qq
g, @ ; 2 “x.H. (R “H.. (R 9)
TUXy- H“(R)— X, ! Hz,‘,(R)*xlx2 12( ) X%, 21( ) (6.
2 2 (V (R)n -V (R)n_}
} Xy g Mg g N g
q .
t 3
Naote that ”q' the complex conjugate aof nq appears in place
+
[} 2 the operator nq. in accord with the classical equivalent of

the boson creation operator.

From this Hamiltonian the equations of motion in the mean

trajectory approximation are obtained using Hamilton's equations
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R = 3H /3P = P/m (6.10)
: 3H /3R 12[3H.  /3R+E{(3V_/3R)n +(3V /3 '
= - = - i + -
P c x| ( 11 q(( q )nq ( q R)nq)
Iy 123 3 Y 3H. /3
-ix,!"3H,,/3R-2Re(x,x,3H ,/3R) (6.11)
W= -2 3H /3n. =-iom - =V ¢€R) Ix, 2 (6.12)
{ Nq R ‘"¢’ Mg a"¢" R 'q Xyt '
-
v cx g . * i * 2
nq =R BHC/anq = lquq * R Vq(R)[xlg (6.13)
In addition, the quantum equations of motion for the amplitudes

x, and x2 are obtained in the form

1 -
L = x
lhxl = [HII(R)+§(Vq(R)nq+Vq(R)nq)lx1 - H ,(R)x, (6.14)

1hx2 = H22(R)x2 - HZl(R)xl (6.15)

The equations (6.12) and (6.13) can be formally integrated
to give

R t , lw _(t'-t)
no(t) = mogt) - § (i/R) V (R(t')) x (t') ‘e 9 dt
q q o q 1
(6.16)

where ng(t) = n:(o)e_lwqt is the value of nq(t) in the absence of
the ion. The initial value ng(ol may be regarded as a stochastic

variable given by the (classical) thermal distribution
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nw -1
=
?(ng,ng ) = 20 exp{-(4hu /kT)!nofz} (6.17)

2

Note that Planck's constant appears in this classical

distribution because it is used to construct the dimensionless

k3
uvantities n_ and n_ from the momentum and the coordinate of the
q g g

cscillator.

We summarize these resulits by outlining how they should be
Y used in a calculation in which all practical concerns (I.e.
computer cost) are disregarded. Let us assume that we want to

calculate the thermal average of a quantity A(t) =

A(xl(t),xz(t),R(t)). This is the expectation value of the

<L) {Afo(t)>)

dynamic guantity A (i.e. A(x1(t),x2(t), R{%))
and can, in gene '2l, depend on Xy %y and R. To start the

calculation we generate by Monte-Carlc the values of nc(o) and

x
n (o) for all the bosons (i.e. g=1,2,...N) required for a

e}

3
[
Jote

ealistic descripticn of the electron excitations of %the gas

®
system. We denote the set {nq(o),nq(o)}c= v SV B. We can

now solve simultaneously the Eg (6.16Lt) fo2r - _ (%) and =»n_{t), the

Zgs. (6.13) and (6.15) for xl(t) and xz(t), and the eguatiaons
% -
r6.10) and (6.11) for R{t). This provides the cuantitiss
L J
[ R{%),x, (%) and xz(t), for any desired time. We can thereiore O

compute A_(t), corresponding to the set p initial conditicn.

A

condivtions anéd repeat the calculaticn cutlined zbove., The

I}

-

thermal average <A> of A 1s given by
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<A> = % Ap(xl(t).xz(t).R(t)) . (6.18)
P
While this calculation illustrates the structure of the
theory, it is rather expensive. A simpler procedure is to write

{by using Eq. (6.16))

x * t 2
é(Vq(R)ﬂq(f) + Vq(R) ﬂq) = g(t) + é Y(t-T)lxl(T)l dt
with (6.19)

-
= °
E(t) 2Re i Vq(t)ﬂq(t)
and
y(t-1) = Re(2/iR) & Vq(t)V;(r)exp[iwq(t~r)] (6.20)

q

We can now treat ¢(t) as a Gaussian variable at each time t with

the correlation function

<E(t)E(T)> = Re T V_(£)V.(T)(KT/hw _)explisv (t-1)]
q q q q q (6.21)
We can meocdel the sum above by using a simple, but appropriate,
function of t and T; this can save substantial computer time,
since we need to generate one Gaussian variable, i.e. g(t), for
each time point. In making such models we must assure that the
exact relationship between y(t-1) and <g{t)e(t)> is preserved;

otherwise fluctuation-dissipation theorem is viclated.

PP P W GO |
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VII DISCUSSION

The main thrust of this paper is that ., the theory of low
energy collision phenomena which can be described as two or many
state problems, may have to discard the trajectory approximation.
The reason for this is rather general and the problem is present
whenever we deal with two sets of degrees of freedom x and R and
we must treat x quantum mechanically, but intend to treat

. S s . . :
class;cally.2 If we replace R in the Hamiltonian with a

an

trajectory R{t), cbtained by following some classical

Ka}

rescription, we generate a time dependent Hamiltonian for the
guantum variables x; this forces the guantum subsysten %o undergo
transitions fron the initial state |i> to some set of final
states |f>, f=1,2 ... The system conserves energy only i1f the
energy loss (or gain) along the trajectory R(t) egquals Z_-Z,.
Since the latter is different for each final state, energv

conservation requires a different trajectory R. .{%) for each

transition i » £. Therefore the force Fi IR, (%)) appearing in
- - -
the'Newton" eguation for R, (%),
-y -
MR, t) = F, R t 7.1
L MRy, e 1R = Fy e Ry g (R (7.2)
aust be such that it will guarantee that v%
MR 2)%/2 + £, = MR (t,)%/2 + E (7.2)
MR L (%, .= MR, . () . B, .
<
<
Here :2 and ©., are times post and prior the collision (for q
{
L
e tatat e -A“A' — e L “'-.';"'.. PRy
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simplicity we assume that the interaction between R and x is non-
zero only during the collision; this is true for the charge and
energy transfer problems considered here). Since'energy
conservation fixes the final state of the classical degrees of
freadom we expect Fi,f(Ri,f(t)) to be a functional of the
trajectory and the Eg. (7.1) to _be an integro-differential

equation.zg’ss'56

Furthermore, due to the nature of guantum
mechanics each transition i - f for the guantum subsystem has a
probabillity wi—f(Ri,f(t)) which is a functional of the
appropriate trajectory Ri,f(t)' Thus a complete description of
all the events possible in such a system consists of a catalog of
all the transitions i » f that do not wviolate conservation laws,
a set of integro~-differential "Newton's" equations of the form

{7.1) which give a trajectory for each transition, and a set

consisting of one transition preobability per transition.

These general considerations do not, however, tell us how
to derive these equations. The obvious strategy is to forrnulate
the problem fully guantum mechanically and then <o take the
classical limit for R. We have explored three such methods: one
using the stationary phase approximation in the path integral
56,57,

expression for the transition amplitude a second, using cof

wave-packets %o generate classical like eguations for the
Ces : : 3
position of the center of the packet and its group velocity: 1

and a third, which uses the eikonal method. The cliassical

approximation for R(%) can be carried out within each method at

"y »

')
AP
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various levels, generating different "classical" theories for

o
(WS
/)]

R{(t). The mean trajectory approximation (MTA) presented her

the simplest of them.

Within a path integral representation the MTA is obtained
by using a coherent state representation for the electronic
degrees of freedom and by obtainiag equations of motion for all
the variables by using the staticnary phase approximation.56
Thus the electronic amplitudes are treated as classical fields.
In spite of this we get for them a time dependent Schrodinger
eguation driven by an effective, mean potential. If we were to
taxe a classical limit for the nuclear cocrdinates only, then we

. 57 . ; : .
would have obtained one integro-differential equation for the

o)

(o

trajectory Rif(t), depending on the initial and final electron

state.

Within the wave packet formalism MTA is obtained by %aking

cne Gaussian packet for both electronic states. A refined

e

A

n58 takes two packets, one for each electronic state, a

gy

generates two "classical" eguations, for two trajectories whic

jointly drive the electronic degrees of freedon.

Finallv the eikonal method used nere can be refined b

cdefining two eikonals, one for each electronic state.

This brief survey of various gossibillities serves 0
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pinpeint the limitations of the mean trajectory approximation.
Since it generates only one trajectory it satisfiies energy
conservation only in average. More specifically the two
trajectories theory58 generated by propagating two Gaussains, oné
for each electronic state, gives an ionic trajectory and a
neutral one. If the incident trajectory is neutral then the
kinetic energy of the outgoing neutral trajectory is the same as
the kinetic energy of the incoming one. Hawever the kinetic
energy of the outgoing ionic trajectory is less than the incident
kinetic energy of the neutral by an amount egual to the
ionization energy. The mean trajectory method gives the same
kine%tic energy for the ion and neutral. Furthermore, the two
trajectory method can generate an ionic trajectory that is
trapped in the ionic well and a neutral one which leaves the

surface. The mean trajectory cannot split in this way. It is

551

therefore not useful in dealing with trapping. inally, the two
trajectory method gives ion and neutral trajectories having
turning points on the ionic and the neutral curves, respectively;
the mean trajectory has a turning point at a mean position
between the twe turning points menticned above. This comparison
between the two methods shows the one should not use the MTA at
very low energy when sticking (i.e. trajectery splitting) is
important, or when one intends to analyze detailed Kinetic energy
measurements. However, it is hard to believe that the Ionization

probabilities at moderate anéd low energies are very sensitive 1o

the detalls of %the nuclear motion. For such situations the mean
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trajectorv method should be an adequate tool for calculating the

ionization vyield.
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APPENDIX A -

The derivation of Eq (7) is similar to the procedure used

tc obtain the coherent state representation of the path integral:

i
-= H(t.;)At
( J)

<wi|e

o

<P IR je,_ >
~ 2 J _J i-1
0y_> = <l"j"”j-l’[l AT IR ]
J TJ-1
(A-1)
~ i
~ <¢j}¢j_l> exp{ 5 <wj]H(tj)!wj>At}

where wj=w(tj). Here we allowed for an explicit time dependence

of H and have made the substitution

W TEIE D 1>/ <o by y> = < H]Y >

because this gquantity already multiplies the small 4t. Alsc

Wilbs_ 1> = <hslugmdiat 1-<y 1 >at

J—
. (A-2)
-<g.ly.>Aat
~ e 3 32
Combining Egs (A-1) and (A-2) and using )
i = z t = L) i > wit
<yj,ﬂ}mj> <(; xn(“j)|n>)lﬁ‘(: ‘n( J),n>) with 4
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Figure 1.
Figure 2.
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FPigure Captions

The energies of the neutral and the ionic states
involved in the description of the ionization
process. Various ionic curves differ through the
final energy € of the transferred electron, with
respect to the Fermi level. 1I_ is the icnization
potential of the neutral in the absence of the
surface. 4, is the work required %o remove an

electron from the metal to infinity.

The energies of the neutral and the ionic curves

invoked in discussing the neutralization of the ion.

The neutral curves all differ through the initial

energy n_ of the thermally excited ele on used for

(¢}
(44
'
H

P
neutralizing the ion. &, is the binding energy of

>

the ion to the surface.
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